Divergent Cesàro Means of Jacobi-Sobolev Expansions

نویسنده

  • Bujar Xh. FEJZULLAHU
چکیده

Let μ be the Jacobi measure supported on the interval [−1, 1]. Let introduce the Sobolev-type inner product 〈f, g〉 = ∫ 1 −1 f(x)g(x) dμ(x) +Mf(1)g(1) +Nf ′(1)g′(1), where M,N ≥ 0. In this paper we prove that, for certain indices δ, there are functions whose Cesàro means of order δ in the Fourier expansion in terms of the orthonormal polynomials associated with the above Sobolev inner product are divergent almost everywhere on [−1, 1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divergent Cesàro and Riesz means of Jacobi and Laguerre expansions

We show that for δ below certain critical indices there are functions whose Jacobi or Laguerre expansions have almost everywhere divergent Cesàro and Riesz means of order δ.

متن کامل

Cesàro Means of Orthogonal Expansions in Several Variables

Cesàro (C, δ) means are studied for orthogonal expansions with respect to the weight function ∏d i=1 |xi |2κi on the unit sphere, and for the corresponding weight functions on the unit ball and the Jacobi weight on the simplex. A sharp pointwise estimate is established for the (C, δ) kernel with δ >−1 and for the kernel of the projection operator, which allows us to derive the exact order for t...

متن کامل

Divergent Legendre-sobolev Polynomial Series

Let be introduced the Sobolev-type inner product (f, g) = 1 2 Z 1 −1 f(x)g(x)dx + M [f ′(1)g′(1) + f ′(−1)g′(−1)], where M ≥ 0. In this paper we will prove that for 1 ≤ p ≤ 4 3 there are functions f ∈ L([−1, 1]) whose Fourier expansion in terms of the orthonormal polynomials with respect to the above Sobolev inner product are divergent almost everywhere on [−1, 1]. We also show that, for some v...

متن کامل

Research Article A Cohen-Type Inequality for Jacobi-Sobolev Expansions

Let μ be the Jacobi measure supported on the interval [−1, 1]. Let us introduce the Sobolev-type inner product 〈 f ,g〉 = ∫ 1 −1 f (x)g(x)dμ(x) + M f (1)g(1) + N f ′(1)g′(1), where M,N ≥ 0. In this paper we prove a Cohen-type inequality for the Fourier expansion in terms of the orthonormal polynomials associated with the above Sobolev inner product. We follow Dreseler and Soardi (1982) and Marke...

متن کامل

The coefficients of differentiated expansions of double and triple Jacobi polynomials

Formulae expressing explicitly the coefficients of an expansion of double Jacobi polynomials which has been partially differentiated an arbitrary number of times with respect to its variables in terms of the coefficients of the original expansion are stated and proved. Extension to expansion of triple Jacobi polynomials is given. The results for the special cases of double and triple ultraspher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014